来福网

欧拉公式

欧拉公式(英语:Euler's formula,又称尤拉公式)是复分析领域的公式,它将三角函数与复指数函数关联起来,因其提出者莱昂哈德·欧拉而得名。欧拉公式提出,对任意实数 x {displaystyle x} (英语:cosine plus i sine,余弦加 乘以正弦)。由于该公式在 x {displaystyle x} π 的不同倍数,而它的复对数可以保持不变。

1740年左右,欧拉把注意力从对数转向指数函数,得到了以他命名的欧拉公式。欧拉公式通过比较指数的级数展开和三角函数得到(其实此证法存在问题,原因见验证方法,但结论正确。),于1748年发表。

大约50年之后,卡斯帕尔·韦塞尔提出可以把复数视做复平面中的点。

对于任意实数 x {displaystyle x,} ,以下等式恒成立:

由此也可以推导出

x = π {displaystyle x=pi ,} 时,欧拉公式的特殊形式为

首先,在复数域上对 e x {displaystyle e^{x},} 进行定义:

对于 a , b R , c = a + i b C {displaystyle a,bin mathbb {R} ,c=a+ibin mathbb {C} } ,规定 e c = lim n ( 1 + c n ) n {displaystyle e^{c}=lim _{nrightarrow infty }(1+{frac {c}{n}})^{n}}

对复数的极坐标表示 w = u + i v = r ( cos θ + i sin θ ) {displaystyle w=u+iv=r(cos theta +isin theta )} ,有:

r = u 2 + v 2 R , θ = arctan ( v u ) R {displaystyle r={sqrt {u^{2}+v^{2}}}in mathbb {R} ,theta =arctan({frac {v}{u}})in mathbb {R} }

且根据棣莫弗公式, w n = ( u + i v ) n = r n ( cos n θ + i sin n θ ) {displaystyle w^{n}=(u+iv)^{n}=r^{n}(cos ntheta +isin ntheta )}

从而有:

( 1 + a + b i n ) n = n = r n ( cos θ n + i sin θ n ) {displaystyle (1+{frac {a+bi}{n}})^{n}=^{n}=r_{n}(cos theta _{n}+isin theta _{n})}

假设 n | a | {displaystyle n|a|} ,则:

r n = n 2 , θ n = n arctan b n 1 + a n {displaystyle r_{n}=^{frac {n}{2}},theta _{n}=narctan {frac {frac {b}{n}}{1+{frac {a}{n}}}}}

从而有:

lim n ln r n = lim n = lim n = a {displaystyle {begin{aligned}lim _{nrightarrow infty }ln r_{n}&=lim _{nrightarrow infty }\&=lim _{nrightarrow infty }\&=a\end{aligned}}}

这一步骤用到 ln ( 1 + x ) x {displaystyle ln(1+x)approx x} (墨卡托级数)


即:

lim n r n = lim n e ln r n = e a {displaystyle lim _{nrightarrow infty }r_{n}=lim _{nrightarrow infty }e^{ln r_{n}}=e^{a}}

又有:

lim n θ n = lim n ( n arctan b n 1 + a n ) = lim n ( n b n 1 + a n ) = b {displaystyle {begin{aligned}lim _{nrightarrow infty }theta _{n}&=lim _{nrightarrow infty }(narctan {frac {frac {b}{n}}{1+{frac {a}{n}}}})\&=lim _{nrightarrow infty }(n{frac {frac {b}{n}}{1+{frac {a}{n}}}})\&=b\end{aligned}}}

从而可以证明:

lim n ( 1 + a + b i n ) n = e a ( cos b + i sin b ) {displaystyle lim _{nrightarrow infty }(1+{frac {a+bi}{n}})^{n}=e^{a}(cos b+isin b)}

即:

e a + i b = e a ( cos b + i sin b ) {displaystyle e^{a+ib}=e^{a}(cos b+isin b)}

a = 0 {displaystyle a=0} ,可得欧拉公式。

证毕。

在复分析领域,欧拉公式亦可以以函数的形式表示

并且一般定义域为 θ R {displaystyle theta in mathbb {R} ,} ,值域为 θ C {displaystyle theta in mathbb {C} ,} (复平面上的所有单位向量)。

当一复数的模为1,其反函数就是辐角(arg函数)。

θ {displaystyle theta } 值为复数时,cis函数仍然是有效的,所以有些人可利用cis函数将欧拉公式推广到更复杂的版本。

由于 e i α = cos α + i sin α {displaystyle e^{ialpha }=cos alpha +isin alpha } e i β = cos β + i sin β {displaystyle e^{ibeta }=cos beta +isin beta } ,则有

实部等于实部,虚部等于虚部,因此

这公式可以说明当 x {displaystyle x} 为实数时,函数 e i x {displaystyle e^{ix}} 可在复数平面描述一单位圆。且 x {displaystyle x} 为此平面上一条连至原点的线与正实轴的交角。先前一个在复平面的复点只能用笛卡尔坐标系描述,欧拉公式在此提供复点至极坐标的变换

任何复数 z = x + y i {displaystyle z=x+yi} 皆可记为

在此

后台-插件-广告管理-内容底部广告位PC端
后台-插件-广告管理-内容底部广告位手机端

评论

全部评论